Wake measurements of the Unsteady Aero Experiment turbine in the region of a tail vane

Scott Larwood
National Renewable Energy
Laboratory

Project Goals

- Increase knowledge of tail vane aerodynamics
- Tie wake measurements in with detailed rotor aerodynamics
- Part of DOE Small Turbine Program modeling efforts

Description

- Two 3-axis sonic anemometers placed behind rotor at hub height
- 30 second wind speed data set at 10 Hz in addition to rotor data set

Wake Measurement Setup

- 0.6D downstream
- at 0.02 and 0.49 r/R
- Yaw CW from top
- Rotor CCW from upstream
- Yaw stop at 65°
- Nacelle and boom influence

Wake Research

- Past wake measurement programs:
 - wake models for rotor aerodynamics
 - wakes of turbines in arrays
- No previous measurements were in typical tail vane region

Weaknesses of Current Program

- low bandwidth (4/rev max)
- limited wake spatial resolution
- low tip speed ratios
- yaw dynamics not simulated
- turbulence not simulated

Test Matrix

Uw	TSR	Yaw Angle									
(m/s)		0	5	10	15	20	25	30	40	50	60
5.0	7.5	X2	X	X	X	Χ	Χ	Χ	X	X	X
6.0	6.3	Χ	Х	Х	Х	Χ	Х	Х	Х	Х	Х
7.0	5.4	X2	Х	Х	Х	Χ	Х	Х	X	Х	Х
8.0	4.7	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
9.0	4.2	X2	Χ	Х	Х	Χ	Х	X	X	X	X
10.0	3.8	X2	Х	Х	X	Х	Х	Х	Х	X	X
11.0	3.4	Χ	Х	X	X	Χ	X	Χ	X	X	X
12.0	3.1	Χ	Χ	Χ	X	Χ	Χ	X	X	X	X
13.0	2.9	X2	X	X	X	Χ	X	Χ	X	X	X
14.0	2.7	Χ	Х	Х	X	Χ	Х	X	X	X	X
15.0	2.5	X2	Х	Х	Х	Х	X	X	Х	Х	X
16.0	2.4	X	Х	Х	Х	X	Х	X			
17.0	2.2	X2	X	X	X	Х	X	X			
18.0	2.1	Χ	X	X	X	Χ					
19.0	2.0	X	Х	Х	X	X					
20.0	1.9	X	Х	Х							
21.0	1.8	X	Х	X							
22.0	1.7	Х	Х	Х							
23.0	1.6	Χ									
24.0	1.6	Χ									
25.0	1.5	Χ									

Current Status

- Data submitted to RANN for furling models
- ASME 2001 Wind Energy paper in progress